abstracts for 2017-18 seminars

(The seminar webpage is here.)

Sam Grushevsky (Stony Brook University)

September 29, 2017

Geometry of compactified moduli of cubic threefolds

Starting from considering the GIT compactification of the moduli of cubic threefolds, the “wonderful” compactification, which is smooth with normal crossing boundary, is constructed by an explicit sequence of blowups. We show that there exists a family of intermediate jacobians over the wonderful compactification. We compute the cohomology of the wonderful compactification by comparing it to the symplectic resolution. Based on joint works with Casalaina-Martin, Hulek, Laza

Felix Janda (University of Michigan)

October 6, 2017

Genus two curves on quintic threefolds

Virtual (Gromov-Witten) counts of maps from algebraic curves to quintic 3-folds in projective space have been of significant interest for mathematicians and physicists since the early 90s. While there are (very inefficient) algorithms for computing any specific Gromov-Witten invariant, explicit formulae are only known in genus zero and one. On the other hand, physicists have explicit conjectural formulas up to genus 51.

I will discuss a new approach to the Gromov-Witten theory of the quintic (using logarithmic geometry) which yields an explicit formula in genus two that agrees with the physicists’ conjecture.

This is based on joint works in progress with Q. Chen, S. Guo and Y. Ruan.

Remy van Dobben de Bruyn (Columbia)

October 20, 2017

Dominating varieties by liftable ones

Given a smooth projective variety over an algebraically closed field of positive characteristic, can we always dominate it by another smooth projective variety that lifts to characteristic 0? We give a negative answer to this question.

Jason Lo (Cal State Northridge)

October 27, 2017

The effect of Fourier-Mukai transforms on slope stability on elliptic fibrations

Slope stability is a type of stability for coherent sheaves on smooth projective varieties. On a variety where the derived category of coherent sheaves admits a non-trivial autoequivalence, it is natural to ask how slope stability `transforms’ to a different stability under the autoequivalence. This question also has implications for understanding the symmetries within various counting invariants. In this talk, we will give an answer to the above question for elliptic surfaces and threefolds under a Fourier-Mukai transform.

Daniel Litt (Columbia University)

December 1, 2017

Galois actions on fundamental groups

Let X be a variety over a field k, and let x be a k-rational point of X. Then the absolute Galois group of k acts on the etale fundamental group of X. If k is an arithmetically interesting field (i.e. a number field, a p-adic field, or a finite field), then this action reveals a great deal about the geometry of X; if X is a variety with an interesting fundamental group, this action reveals a great deal about the arithmetic of k.

This talk will discuss (1) joint work with Alexander Betts about the structure of Galois actions on fundamental groups, (2) how to describe invariants of these actions in terms of more geometric invariants of X, and (3) applications of this work to classical algebraic geometry, and, if time permits, arithmetic.

Pablo Solis (Stanford)

January 19, 2018

Hunting Vector Bundles on \mathbf{P}^1 \times \mathbf{P}^1

Motivated by Boij-Soderberg theory, Eisenbud and Schreyer conjectured there should be vector bundles on \mathbf{P}^1 \times \mathbf{P}^1 with natural cohomology and prescribed Euler characteristic. I’ll give some background on Boij-Soderberg theory, explain what natural cohomology means and prove the conjecture in “most” cases.

Izzet Coskun (University of Illinois at Chicago)

January 26, 2018

The geometry of moduli spaces of sheaves on surfaces

In this talk, I will discuss recent results concerning the Brill-Noether Theory of higher rank bundles on rational surfaces and stable cohomology of moduli spaces of sheaves. In joint work with Jack Huizenga, we characterize when the cohomology of a general stable sheaf on a Hirzebruch surface is determined by its Euler characteristic. We use these results to classify moduli spaces where the general bundle is globally generated. If time permits, I will discuss joint work with Matthew Woolf on the stable cohomology of moduli spaces on rational surfaces.

Katrina Honigs (Utah)

February 2, 2018

Fourier-Mukai partners of Enriques and bielliptic surfaces in positive characteristic

There are many results characterizing when derived categories of two complex surfaces are equivalent, including theorems of Bridgeland and Maciocia showing that derived equivalent Enriques or bielliptic surfaces must be isomorphic. The proofs of these theorems strongly use Torelli theorems and lattice-theoretic methods which are not available in positive characteristic. In this talk I will discuss how to prove these results over algebraically closed fields of positive characteristic (excluding some low characteristic cases). This work is joint with M. Lieblich and S. Tirabassi.

Junliang Shen (ETH)

February 9, 2018

K3 categories, cubic 4-folds, and the Beauville-Voisin conjecture

We discuss recent progress on the connection between 0-cycles of holomorphic symplectic varieties and structures of K3 categories. We propose that there exists a sheaf/cycle correspondence for any K3 category, which controls the geometry of algebraically coisotropic subvarieties of certain holomorphic symplectic varieties. Two concrete cases will be illustrated in details:
(1) the derived category of a K3 surface (joint with Qizheng Yin and Xiaolei Zhao),
(2) Kuznetsov category of a cubic 4-fold (joint with Qizheng Yin).
If time permits, we will also discuss the connection to rational curves in cubic 4-folds.

This entry was posted in seminars. Bookmark the permalink.