Fock–Goncharov dual cluster varieties and Gross–Siebert mirrors

Pierrick Bousseau

University of Georgia

Stanford Algebraic Geometry Seminar

November 18, 2022

Plan of the talk

- Cluster varieties
 - Fock Goncharov dual cluster varieties: (A, X)
- Gross-Siebert mirror symmetry for (log) Calabi-Yau varieties

Main result:

The mirror of a log Calabi–Yau compactification of the $\mathcal X$ cluster variety is a degeneration of the $\mathcal A$ cluster variety and vice-versa. Argüz–Bousseau, arXiv:2206.10584

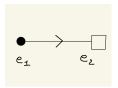
Cluster varieties from seeds

Fomin–Zelevinsky, Fock–Goncharov,...

Definition

A seed is the data of:

- a lattice $N \cong \mathbb{Z}^n$, with a basis $\{e_i\}_{i \in \overline{I}}$
- a skew-symmetric form $\langle \cdot, \cdot \rangle : N \times N \to \mathbb{Z}$



$$\#$$
 arrows = $\langle e_i, e_j \rangle$

Mutation of a seed at the vertex e_k :

$$e'_i = \begin{cases} e_i + \max(\langle e_i, e_k \rangle, 0)e_k & \text{if } i \neq k \\ -e_k & \text{if } i = k \end{cases}$$

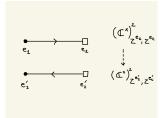
Cluster varieties from seeds

The \mathcal{X} and \mathcal{A} cluster varieties are obtained by gluing tori:

- The \mathcal{X} cluster variety is a union of tori: $\bigcup \operatorname{Spec} \mathbb{C}[N]$ glued via birational transformations $z^n \mapsto z^n (1 + z^{e_k})^{-(v_k, n)}$
- The $\mathcal A$ cluster variety is a union of tori: $\bigcup \operatorname{Spec} \mathbb C[M]$ glued via birational transformations $z^m \mapsto z^m (1+z^{\nu_k})^{-(e_k,m)}$, where $\nu_k = \langle e_k, \rangle \in M$.

Fix $I \subset \overline{I}$, and denote

$$N_{uf} = \bigoplus_{i \in I} \mathbb{Z} e_i$$



The Fock–Goncharov conjecture

- Fock–Goncharov: \mathcal{A} and \mathcal{X} are dual in the sense that the algebra of regular functions on \mathcal{A} admits a canonical basis indexed by integral tropical points of \mathcal{X} (and vice-versa).
- Gross–Hacking–Keel 1 : The Fock–Goncharov conjecture cannot hold without necessary positivity assumptions (roughly put, unless $\mathcal X$ is affine)
- Gross–Hacking–Keel–Kontsevich ²: proof of the Fock–Goncharov conjecture, under necessary positivity assumptions

 $^{^{1}}$ Gross-Hacking-Keel: Birational geometry of cluster algebras, **Algebraic Geometry**, (2015)

²Gross-Hacking-Keel-Kontsevich: Canonical bases for cluster algebras, **Journal of the American Mathematical Society**, (2018).

Proof of the Fock–Goncharov conjecture without positivity assumptions

- Consider the \mathcal{A} cluster variety with principal coefficients $\mathcal{A}_{prin} \to \operatorname{Spec} \mathbb{C}[N_{uf}]$
 - $ightharpoonup \mathcal{A}_{prin}$ is a family containing the \mathcal{A} cluster variety.
 - It is obtained from the seed for the ${\cal A}$ cluster variety, by adding one frozen vertex for every unfrozen vertex
- There is a partial compactification $\bar{\mathcal{A}}_{prin} \to \operatorname{Spec} \mathbb{C}[N_{uf}^+]$ with special fiber the torus $\operatorname{Spec} \mathbb{C}[M]$
 - ▶ Let $\overline{\bar{A}}_{prin}$ → Spf $\mathbb{C}[\![N_{uf}^+]\!]$, formal completion along special fiber.

Theorem (GHKK¹)

The $\mathbb{C}[\![N_{uf}^+]\!]$ -algebra of regular functions on $\widehat{\overline{\mathcal{A}}}_{prin}$ admits a canonical basis indexed by integral tropical points of \mathcal{X} .

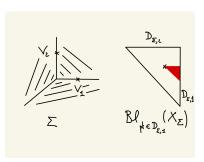
• The proof uses a "cluster scattering diagram".

¹Gross-Hacking-Keel-Kontsevich: Canonical bases for cluster algebras, **Journal of the American Mathematical Society**, (2018)

Cluster varieties as blow-ups of toric varieties

From the data of a seed one can construct a toric variety as follows:

- $v_i := \langle e_i, \rangle \in M$ (assume v_i is primitive for all $i \in I$ otherwise, work with orbifolds).
- Σ : a fan in $M_{\mathbb{R}}$ of a smooth projective toric variety X_{Σ} containing the rays $\mathbb{R}_{\geq 0} v_i$ for all $i \in \overline{I}$.
- $D_{\Sigma,i}$: the toric divisor of X_{Σ} corresponding to the ray $\mathbb{R}_{\geq 0}v_i$.
- H_i : hypersurface of $D_{\Sigma,i}$ defined by the equation $1+z^{e_i}=0$, for all $i\in I$ (unfrozen).



Log Calabi–Yau compactifications of cluster varieties

Theorem (Gross–Hacking–Keel ²)

Let (X, D) be the log Calabi–Yau pair where X is the blow-up of X_{Σ} along the hypersurfaces $H_i \subset D_{\Sigma,i}$, and D is the strict transform of D_{Σ} . The $\mathcal X$ cluster variety is isomorphic (up to codimension two) to $X \setminus D$.

- (X, D) is called a log Calabi-Yau compactification of the \mathcal{X} cluster variety. An analogous construction (exchanging e_i and v_i), defines a log CY compactification of the \mathcal{A} cluster variety.
- Gross–Siebert³: Mirror symmetry for more general log Calabi–Yau pairs (X, D) in any dimension.

¹Gross–Hacking–Keel: Birational geometry of cluster algebras, **Algebraic Geometry**, (2015)

²Gross-Siebert: The canonical wall structure and intrinsic mirror symmetry, **Inventiones mathematicae**, (2022)

³Argüz-Gross: The higher dimensional tropical vertex, **Geometry & Topology**, (2020).

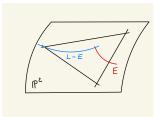
Mirror symmetry for log Calabi-Yau Pairs

• Gross–Siebert mirror symmetry: Associated to a (maximal) log Calabi–Yau pair (X, D) is a mirror family

$$X^{\vee} \longrightarrow \operatorname{Spf}\mathbb{C}\llbracket \operatorname{NE}(X)
rbracket$$

where NE(X) is the monoid of integral points in the cone of effective curve classes in X, constructed using a **canonical wall structure**¹ which is a combinatorial gadget encoding tropical analogues of " \mathbb{A}^1 curves" in the "tropicalization of (X, D)".

• \mathbb{A}^1 curves: stable rational maps in (X, D) with image touching D at a single point)

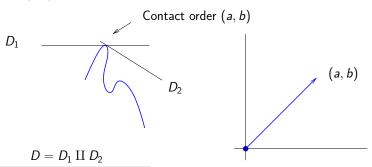


The blow up of the projective space \mathbb{CP}^2 at one point on D.

- *E*: exceptional curve
- L-E: the strict transform of the line passing through the point we blow up and the opposite vertex.

The tropicalization of (X, D)

- The tropicalization of (X, D), $\Sigma_{(X,D)}$ is a topological space referred to as a conical affine pseudo-manifold¹.
 - ► The integral points parametrize possible tangency conditions at a point of intersection of the curve with *D*.
 - ▶ If D is smooth, we just have $\Sigma_{(X,D)}(\mathbb{Z}) = \mathbb{N}$.
 - If D has two components meeting transversally at a nodal point, then $\Sigma_{(X,D)}(\mathbb{Z})=\mathbb{N}^2.$



¹Gross–Hacking–Keel–Siebert: Theta functions on varieties with effective anti-canonical class, **Memoirs of the AMS**, (2016)

The canonical wall structure

Definition (Gross-Siebert)

The canonical wall structure $\mathfrak{D}_{(X,D)}$ associated to (X,D) is a union of pairs $(\mathfrak{d},f_{\mathfrak{d}})$, where

- \mathfrak{d} : codimension one cells in the tropicalization of (X, D)
- f_0 : wall crossing functions given by

$$f_{\mathfrak{d}} = \exp(k_{\tau} N_{\tau,\beta} t^{\beta} z^{-\nu}),$$

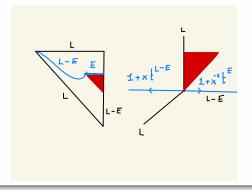
where τ is a tropical type of an \mathbb{A}^1 curve, $k_{\tau} \in \mathbb{N}$ is a multiplicity, $\beta \in H_2(X, \mathbb{Z})$, $N_{\tau,\beta}$ is the number of \mathbb{A}^1 curves of type τ and class β , and ν is the direction of the leg of the tropical curve corresponding to the point of intersection with the boundary.

• Heuristically, \mathbb{A}^1 curves are analogues of holomorphic discs with boundaries on SYZ fibers, the class β keeps track of the area of such discs, while ν is the homology class of the boundary.

The canonical wall structure for the blow up of \mathbb{P}^2 at a non toric point

Example

X: the blow-up of \mathbb{P}^2 at a single non-toric point, D strict transform of the toric boundary divisor in \mathbb{P}^2 . The canonical wall structure for (X, D):



Theta functions from broken lines

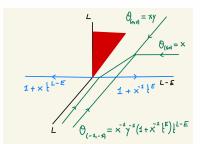
• Algebra of functions on the mirror of (X, D): $\mathbb{C}[NE(X)]$ -algebra with (topological) basis of theta functions $(\vartheta_m)_{m \in \Sigma_{(X,D)}(\mathbb{Z})}$

Example

X: the blow-up of \mathbb{P}^2 at a single non-toric point, D strict transform of the toric boundary divisor in \mathbb{P}^2 . The mirror to (X,D):

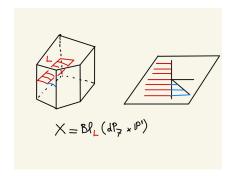
$$\operatorname{Spec} \mathbb{C}[\mathsf{NE}(\mathsf{X})][\vartheta_{(1,0)},\vartheta_{(0,1)},\vartheta_{(-1,-1)}]/$$

$$(\vartheta_{(1,0)}\vartheta_{(0,1)}\vartheta_{(-1,-1)}=t^{[L]}+t^{L-E}\vartheta_{(1,0)})$$

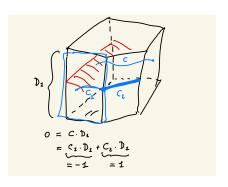


Negative orders in higher dimensions!

- X: Blow up of $dP_7 \times \mathbb{P}^1$ along a line, illustrated in red.
- Curves illustrated in blue have negative contact orders.



Negative orders in higher dimensions!



 \bullet Counts of curves with negative contact orders along D give "punctured log Gromov–Witten invariants" 1

¹Abramovich-Chen-Gross-Siebert: Punctured logarithmic maps, arXiv:2009.07720.

Challenge: practically computing the mirror generally!

To write explicit compute the mirror to (X, D), one needs to compute all possible \mathbb{A}^1 -curves on (X, D).

If (X, D) has a toric model, there is a combinatorial algorithm to compute all \mathbb{A}^1 -curves in (X, D) in any dimension. ¹

¹Argüz–Gross: The higher dimensional tropical vertex, **Geometry & Topology**, (2020).

Computing \mathbb{A}^1 curves: wall structures

To compute \mathbb{A}^1 curves on (X, D) "combinatorially", we construct a wall structure in \mathbb{R}^n :

Definition (Kontsevich–Soibelman / Gross–Siebert)

Fix $M \cong \mathbb{Z}^n$, $N = \text{Hom}(M, \mathbb{Z})$. A **wall structure** (scattering diagram) in \mathbb{R}^n is a union of pairs $(\mathfrak{d}, f_{\mathfrak{d}})$ where

- \mathfrak{d} : codimension one subset of $M_{\mathbb{R}} = \mathbb{R}^n$
- f₀ ∈ G, where G is the Lie group associated to the Lie algebra of zero-divergence vector fields on a family of tori,

$$\mathfrak{g} = \bigoplus_{m \in M, n \in N, (m,n) = 0} \mathbb{C}[[t]] z^m \partial_n$$

with the Lie bracket given by $[z^m\partial_n,z^{m'}\partial_{n'}]=z^{m+m'}\partial_{(m',n)n'-(m,n')n}$

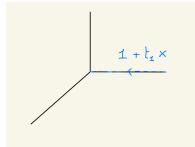
Example: wall structures

Assume, X: blow-up of a toric X_{Σ} along hypersurfaces $H_i \subset D_i$ in the toric boundary D_{Σ} , and D: strict transform of D_{Σ} . We define an **initial** wall structure $\mathfrak{D}_{(X_{\Sigma},H),\mathrm{in}}$ given by a union of pairs $(\mathfrak{d}_i,f_{\mathfrak{d}_i})$, where

- \mathfrak{d}_i : the "**deformation space**" of the tropicalization of H_i ,
- $f_{0_i} := 1 + t_i z^{m_i}$, where m_i is the direction of the ray corresponding to D_i and t_i is a formal variable.

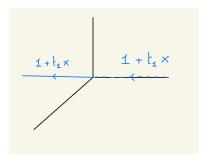
Example

Let $X_{\Sigma} = \mathbb{P}^2$, and H one non-toric point. Then we have $\mathfrak{D}_{(X_{\Sigma},H),\mathrm{in}}$:



The wall-crossing algorithm

- Crossing walls: To a wall $(\mathfrak{d}, f_{\mathfrak{d}})$ with a normal vector n, associate a wall crossing automorphism $z^{m_i} \mapsto f^{\langle m_i, n \rangle} z^{m_i}$.
- A scattering diagram is called consistent if for any joint (codim 2 locus where walls intersect), the composition of all wall-crossing transformations on all adjacent walls are identity.
- ullet The initial wall structure $\mathfrak{D}_{(X_{\Sigma},H),\mathrm{in}}$ is not consistent!
 - ▶ But we can complete it to a consistent one, $\mathfrak{D}_{(X_{\Sigma},H)}$ algorithmically!



The higher dimensional tropical vertex

- The wall structure $\mathfrak{D}_{(X_{\Sigma},H)}$ constructed combinatorially, determines the canonical wall structure defined using enumerative geometry.
 - From t_i variables to curve class variables: f_0 is necessarily a power-series with monomials of the form $\prod_i (t_i z^{m_i})^{a_i}$. Set $\mathbf{A} = \{a_i\}$ and

$$ar{eta}_{\mathbf{A}} := \psi(-\sum_i a_i m_i) + \sum_i \psi(a_i m_i),$$

where $\psi \colon M_{\mathbb{R}} \to \mathcal{N}_1(X_{\Sigma}) \otimes \mathbb{R}$ with kink along a codimension one cone ρ being the class of the corresponding one-dimensional stratum $D_{\rho} \subset X$.

► Define

$$\beta_{\mathbf{A}} := \bar{\beta}_{\mathbf{A}} - \sum_{i} a_{i} E_{i}$$

• Replace $\prod_i (t_i z^{m_i})^{a_i}$ by $t^{\beta_{\mathbf{A}}} z^{\sum_i a_i m_i}$

The higher dimensional tropical vertex

Theorem (Argüz–Gross)

Let (X, D) be a log Calabi-Yau pair with toric model (X_{Σ}, D_{Σ}) , and let $\dim X = n$. In the associated consistent scattering diagram, let $(\mathfrak{d}_{out}, \mathfrak{f}_{\mathfrak{d}_{out}})$ be a wall produced by the algorithm. Then,

$$\log f_{\mathtt{0}_{out}} = \sum_{ au} \sum_{eta} k_{ au} N_{ au,eta}(X,D) t^{eta} z^{-u_{ au}}$$

- τ is a tropical curve with one leg having direction vector u_{τ} , and a (n-2)-dimensional deformation space which forms \mathfrak{d}_{out} ,
- k_{τ} is a constant number associated to τ ,
- $\beta \in H_2(X,\mathbb{Z})$,
- $N_{\tau,\beta}(X,D)$ is the count of \mathbb{A}^1 curves on (X,D) of class β and tropicalization τ .

Idea of proof

- Construct a degeneration to the normal cone $(\widetilde{X}, \widetilde{D})$ to (X, D). The central fiber is a union of
 - ▶ The toric variety X_{Σ}
 - ▶ Blow-ups of \mathbb{P}^1 bundles over D_{Σ}
- Degeneration formula: counts of \mathbb{A}^1 curves in (X,D) can be computed from counts of rational curves in (X_{Σ},D_{Σ}) with relative tangency conditions and the multiple cover formula.

Example

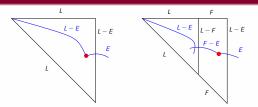


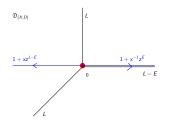
Figure: A degeneration of the blow-up of \mathbb{P}^2 at one point to the union of \mathbb{P}^2 and the blow-up of a Hirzebruch surface

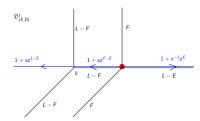
A combinatorial construction of the canonical wall structure

- ullet The tropicalization \widetilde{X} has a natural projection map to $\mathbb{R}_{\geq 0}$.
 - ▶ $\mathfrak{D}^1_{(\widetilde{X},\widetilde{D})}$: walls of $\mathfrak{D}_{(\widetilde{X},\widetilde{D})}$ on the height one slice (this is an affine manifold with singularities away from the origin).
 - $ightharpoonup T_0\mathfrak{D}^1$: The localization around the origin of $\mathfrak{D}^1_{(\widetilde{X},\widetilde{D})}$.

$$\boxed{T_0 \mathfrak{D}^1_{(\widetilde{X},\widetilde{D})} \cong \mathfrak{D}_{(X_{\Sigma},H)}} \text{ and } \boxed{\mathfrak{D}^{1,\operatorname{asymptptotic}}_{(\widetilde{X},\widetilde{D})} \cong \mathfrak{D}_{(X,D)}}$$

▶ Doing monodromy analysis we conclude $\mathfrak{D}_{(X,D)}$ can be determined from $\mathfrak{D}_{(X_{\Sigma},H)}$.





Extension of the Gross-Siebert mirror family

- (X, D): HDTV log Calabi-Yau pair
- $\pi: (X, D) \to (X_{\Sigma}, D_{\Sigma})$, blow-up of hypersurfaces $H_i \subset D_{\Sigma}$.
 - ▶ Gross–Siebert mirror family: $X^{\vee} \to \operatorname{Spf} \mathbb{C}\llbracket \operatorname{NE}(X) \rrbracket$
- We show this family extends!
 - ▶ Exceptional divisors: \mathbb{P}^1 -bundles $\mathcal{E}_i \to H_i$.
 - ightharpoonup \mathbb{P}^1 -fibers E_i .
 - ▶ $N_1(X) = \pi^* N_1(X_{\Sigma}) \oplus \bigoplus_i \mathbb{Z} E_i$ group of curve classes modulo numerical equivalence
 - ▶ Define the monoid $Q \subset N_1(X)$,

$$egin{aligned} Q := \pi^* extstyle NE(X_\Sigma) \oplus igoplus_i (-\mathbb{N}) E_i \ &= \{\pi^* ar{eta} - \sum_i \mathsf{a}_i E_i \, | \, ar{eta} \in \mathsf{NE}(X_\Sigma), \mathsf{a}_i \geq 0 \} \end{aligned}$$

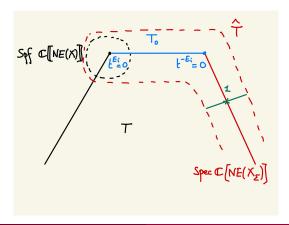
• Define the toric variety T by gluing the affine toric varieties $\operatorname{Spec} \mathbb{C}[NE(X)]$ and $\operatorname{Spec} \mathbb{C}[Q]$ along their common intersection

$$\mathsf{Spec}\,\mathbb{C}[\pi^*\mathsf{NE}(X_\Sigma)\oplus igoplus_i\mathbb{Z} E_i]$$

Extension of the mirror family

- Natural loci in T:
 - $ightharpoonup T_0 := \prod_i \mathbb{P}^1$ with coordinates t^{E_i} and t^{-E_i}
 - ▶ Spec $\mathbb{C}[NE(X_{\Sigma})]$
- Define \widehat{T} as the formal completion of T along

$$T_0 \cup \operatorname{Spec} \mathbb{C}[\mathit{NE}(X_\Sigma)]$$
.



Extension of the mirror family

Theorem (Argüz-Bousseau¹)

The mirror family $X^{\vee} \to \operatorname{Spf} \mathbb{C}[\![\operatorname{NE}(X)]\!]$ canonically extends to a family $\widetilde{X^{\vee}} \to \widehat{T}$. In other words, all curve classes appearing in the equations of the mirror of X are elements of $\operatorname{NE}(X) \cap Q$.

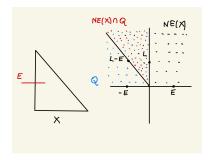
Moreover, the restriction of this extended mirror family to $\operatorname{Spec} \mathbb{C}[\operatorname{NE}(X_{\Sigma})]$ is the toric mirror family $X_{\Sigma} \to \operatorname{Spec} \mathbb{C}[\operatorname{NE}(X_{\Sigma})]$ of the toric variety X_{Σ} .

• Mirror symmetry explanation: this deformation from the mirror of X to the mirror of X_{Σ} is mirror to the blow-up $X \to X_{\Sigma}$.

¹Argüz-Bousseau: Fock-Goncharov dual cluster varieties and Gross-Siebert mirrors, arXiv:2206.10584

Extension of the mirror family: example

- (X, D) obtained from toric \mathbb{P}^2 by one non-toric blow-up.
 - ▶ L: pullback of the class of a line in \mathbb{P}^2
 - E: class of the exceptional curve



• Recall the equation of the mirror: $\vartheta_1\vartheta_2\vartheta_3=t^L+t^{L-E}\vartheta_1$. Indeed, only curve classes in $NE(X)\cap Q$: L and L-E appear.

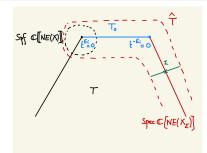
Application: mirror symmetry for cluster varieties

- (X, D): a log Calabi-Yau compactification of the \mathcal{X} cluster variety.
 - \blacktriangleright (X, D) is an example of HDTV log Calabi-Yau pair.
 - ▶ Gross-Siebert mirror construction: mirror family $X^{\vee} \to \operatorname{Spf} \mathbb{C}[\![NE(X)]\!]$.
 - lacktriangle How does it compare with the Fock-Goncharov dual ${\cal A}$ cluster variety?
- Keel-Yu¹: For their non-archimedean construction, if $\mathcal X$ is affine, then the mirror family extends over $\operatorname{Spec} \mathbb C[NE(X)]$ and one recovers $\mathcal A$ as the fiber over 1 in the big torus orbit of the toric variety $\operatorname{Spec} \mathbb C[NE(X)]$
 - ightharpoonup concretely, set all curve classes β in the mirror equation to 0.
- What if X is not affine?
 - ▶ In general, no extension over Spec $\mathbb{C}[NE(X)]$.
 - Setting all curve classes to 0 produces divergent series.

¹Keel-Yu: The Frobenius structure theorem for affine log Calabi-Yau varieties containing a torus, arXiv:1908.09861 (2019).

Application: mirror symmetry for cluster varieties

- We set all curve classes coming from the toric variety X_{Σ} to zero (this makes sense in the extended family $\widetilde{X^{\vee}} \to \hat{T}$).
 - We obtain a family over Spf $\mathbb{C}[N_{uf}^+]$.



Theorem (Argüz-Bousseau¹)

The restriction to $\operatorname{Spf} \mathbb{C}[\![N_{uf}^+]\!]$ of the extended mirror family to the log Calabi-Yau compactification (X,D) of the \mathcal{X} -cluster variety is the formal completion $\widehat{\mathcal{A}_{prin}} \to \operatorname{Spf} \mathbb{C}[\![N_{uf}^+]\!]$ of the \mathcal{A} cluster variety with prinicipal coefficients.

 $^{^1}$ Argüz-Bousseau: Fock-Goncharov dual cluster varieties and Gross-Siebert mirrors, arXiv:2206.10584

Thank You!