Geometry of hybrid curves and their moduli spaces with a view toward applications

Omid Amini

CNRS - CMLS, École Polytechnique

Stanford algebraic geometry seminar

March 11th 2022

Based on joint works with Noema Nicolussi.

- [AN20] Moduli of hybrid curves I: Variations of canonical measures
- [AN22] Moduli of hybrid curves II: Tropical and hybrid Laplacians
- [AN22b] Moduli of hybrid curves III: Algebraic geometry of hybrid curves

- Introduction
- 2 Hybrid curves
- 3 Algebraic geometry of hybrid curves
- 4 Analytic geometry of hybrid curves
- 6 Applications

Motivation

Aim. Describe asymptotic geometry of Riemann surfaces

 \mathcal{M}_g : moduli space of Riemann surfaces of genus g

 $\overline{\mathcal{M}}_g$: Deligne-Mumford compactification

 $\partial \overline{\mathcal{M}}_g = \overline{\mathcal{M}}_g \setminus \mathcal{M}_g$ the Deligne-Mumford boundary.

- ① Limit of the Laplace operator $\Delta = \frac{1}{\pi i} \partial \bar{\partial}$
- 2 Limit of the canonical measures
- Symptotics of Green functions
- Spectral convergence
- **6** . . .

of Riemann surfaces when they approach a boundary point in $\overline{\mathcal{M}}_g$.

Motivation

Aim. Describe asymptotic geometry of Riemann surfaces

 \mathcal{M}_g : moduli space of Riemann surfaces of genus g

 $\overline{\mathcal{M}}_g$: Deligne-Mumford compactification

 $\partial \overline{\mathcal{M}}_g = \overline{\mathcal{M}}_g \setminus \mathcal{M}_g$ the Deligne-Mumford boundary.

- Limit of the Laplace operator $\Delta = \frac{1}{\pi i} \partial \bar{\partial}$
- 2 Limit of the canonical measures
- Asymptotics of Green functions
- Spectral convergence
- **6** . . .

of Riemann surfaces when they approach a boundary point in $\overline{\mathcal{M}}_g$.

Canonical measure on Riemann surfaces

S Riemann surface of genus g

 μ_{Ar} Arakelov-Bergman measure on S

$$\mu_{\mathrm{Ar}} := \frac{i}{2} \sum_{j=1}^{g} \omega_j \wedge \bar{\omega}_j$$

 $\omega_1, \ldots, \omega_g$ orthonormal basis of $H^0(S, \omega_S)$ for

$$\langle \alpha, \beta \rangle := \frac{i}{2} \int_{S} \alpha \wedge \bar{\beta}$$

 μ_{Ar} : positive density measure of total mass g.

Canonical measure on Riemann surfaces

S Riemann surface of genus g

 μ_{Ar} Arakelov-Bergman measure on S

$$\mu_{\operatorname{Ar}} := \frac{i}{2} \sum_{j=1}^g \omega_j \wedge \bar{\omega}_j$$

 $\omega_1, \ldots, \omega_g$ orthonormal basis of $H^0(S, \omega_S)$ for

$$\langle \alpha, \beta \rangle := \frac{i}{2} \int_{S} \alpha \wedge \bar{\beta}$$

 $\frac{1}{g}\mu_{\rm Ar}$: positive density measure of total mass one.

This is called the canonical measure of S denoted by μ^{can} .

Arakelov Green function

S canonically measured
Arakelov Green function

$$g_S: S \times S - diag_S \longrightarrow \mathbb{R}$$

is the unique solution to

$$\frac{1}{\pi i} \partial_z \partial_{\bar{z}} g(q, \cdot) = \delta_q - \mu^{can}, \qquad \int_S g(q, y) \, d\mu^{can}(y) = 0$$

valid for all $q \in S$.

 diag_{S} : $\operatorname{diagonal}$ embedding of $S \hookrightarrow S \times S$.

Appears in Arakelov geometry, String theory

Links to other invariants of Riemann surfaces: Faltings' δ -invariant, Modular graph functions (Green, d'Hoker, Piolin, Vanhove...), Zhang–Kawazumi invariant, ...

Variations of canonical measures and Green functions

 S_1, S_2, S_3, \ldots a sequence of Riemann surfaces of genus g

 s_1, s_2, s_3, \ldots corresponding points in \mathcal{M}_g

 μ_j^{can} : canonical measure of S_j

 g_j : Arakelov Green function of S_j

Question

Assume points s_1, s_2, \ldots of \mathcal{M}_g converge to a point s_∞ in $\overline{\mathcal{M}}_g$.

- **①** What is the limit of the sequence of measures $\mu_1^{can}, \mu_2^{can}, \dots$?
- ${\bf 2}$ Behavior of the Green functions g_1,g_2,\dots close to the boundary?

It turns out that

Deligne-Mumford compactification is not a suitable compactification.

Variations of canonical measures and Green functions

 S_1, S_2, S_3, \ldots a sequence of Riemann surfaces of genus g

 s_1, s_2, s_3, \ldots corresponding points in \mathcal{M}_g

 μ_j^{can} : canonical measure of S_j

 g_j : Arakelov Green function of S_j

Question

Assume points s_1, s_2, \ldots of \mathcal{M}_g converge to a point s_∞ in $\overline{\mathcal{M}}_g$.

- What is the limit of the sequence of measures $\mu_1^{can}, \mu_2^{can}, \dots$?
- ${\bf 2}$ Behavior of the Green functions g_1,g_2,\dots close to the boundary?

It turns out that

 $Deligne-Mumford\ compactification\ is\ not\ a\ suitable\ compactification.$

Hybrid compactification of \mathcal{M}_g

 \mathcal{M}_{g}^{hyb} : moduli space of hybrid curves of genus g introduced in [AN20].

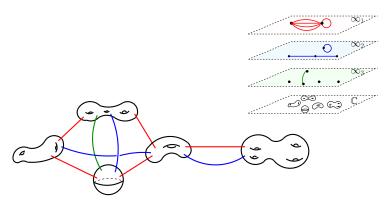


Figure: Example of a hybrid curve with the corresponding infinitary and finitary worldsheets.

In order to describe asymptotic geometry of Riemann surfaces, we need to

• Develop a hybrid function theory.

Hybrid = Complex + Higher rank non-Archimedean, tropical

- Define hybrid canonical measures.
- Formulate a hybrid Poisson equation.
- Define hybrid Green functions.
- Use the formalism + link to asymptotic Hodge theory.

Moreover.

• Establish that algebraic geometry of Riemann surfaces survives in the hybrid limit.

In order to describe asymptotic geometry of Riemann surfaces, we need to

• Develop a hybrid function theory.

Hybrid = Complex + Higher rank non-Archimedean, tropical

- Define hybrid canonical measures.
- Formulate a hybrid Poisson equation.
- Define hybrid Green functions.
- Use the formalism + link to asymptotic Hodge theory.

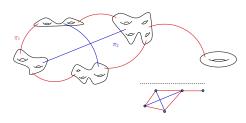
Moreover,

• Establish that algebraic geometry of Riemann surfaces survives in the hybrid limit.

Objective of the talk

- Define hybrid curves and their moduli spaces
- Introduce hybrid function theory
- Algebraic geometry of hybrid curves
- Analytic geometry of hybrid curves
 (hybrid Poisson equation, hybrid canonical mesures, hybrid Green functions)
- Applications

- Introduction
- 2 Hybrid curves
- 3 Algebraic geometry of hybrid curves
- 4 Analytic geometry of hybrid curves
- 6 Applications



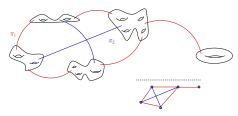
Data underlying the definition

- Stable Riemann surface S with dual graph G = (V, E)
- Partition $\pi = (\pi_1, \dots, \pi_r)$ of the edge set E.
- Edge length function $l: E \to \mathbb{R}_{>0}$ with $l_j = l|_{\pi_j}$.

Metric realization

Obtained from (S, π, l) by plugging an a closed interval of length l_e instead of each node p_e on S.

This is called layered metrized curve complex.



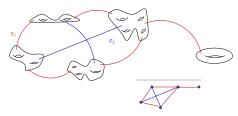
Conformal equivalence at infinity and uniformization

• $(S, \pi, l') \sim (S, \pi, l)$ if there exist $\lambda_1, \ldots, \lambda_r > 0$ with $l'_j = \lambda_j l_j$.

Definition (Hybrid curve)

A hybrid curve $\mathscr C$ is the metric realization of a triple (S,π,l) up to conformal equivalence at infinity.

The integer r is called the rank of \mathscr{C} . The underlying conformal equivalence class of layered metric graphs is called a tropical curve. There is a natural representatives $\mathscr{M}\mathscr{C}$ and Γ in each class by requiring $\sum_{e \in \pi_j} l_j(e) = 1$. (normalization property)



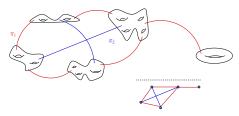
Conformal equivalence at infinity and uniformization

• $(S, \pi, l') \sim (S, \pi, l)$ if there exist $\lambda_1, \ldots, \lambda_r > 0$ with $l'_j = \lambda_j l_j$.

Definition (Hybrid curve)

A hybrid curve $\mathscr C$ is the metric realization of a triple (S,π,l) up to conformal equivalence at infinity.

The integer r is called the rank of \mathscr{C} . The underlying conformal equivalence class of layered metric graphs is called a tropical curve. There is a natural representatives \mathscr{MC} and Γ in each class by requiring $\sum_{e \in \pi_j} l_j(e) = 1$.



Conformal equivalence at infinity and uniformization

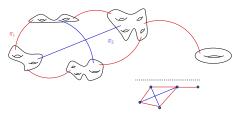
• $(S, \pi, l') \sim (S, \pi, l)$ if there exist $\lambda_1, \ldots, \lambda_r > 0$ with $l'_j = \lambda_j l_j$.

Definition (Hybrid curve)

A hybrid curve $\mathscr C$ is the metric realization of a triple (S,π,l) up to conformal equivalence at infinity.

The integer r is called the rank of $\mathscr C$. The underlying conformal equivalence class of layered metric graphs is called a tropical curve. There is a natural representatives \mathscr{MC} and Γ in each class by requiring $\sum_{e\in\pi_j} l_j(e) = 1$.

normalization property)



Conformal equivalence at infinity and uniformization

• $(S, \pi, l') \sim (S, \pi, l)$ if there exist $\lambda_1, \ldots, \lambda_r > 0$ with $l'_j = \lambda_j l_j$.

Definition (Hybrid curve)

A hybrid curve $\mathscr C$ is the metric realization of a triple (S,π,l) up to conformal equivalence at infinity.

The integer r is called the rank of \mathscr{C} . The underlying conformal equivalence class of layered metric graphs is called a tropical curve. There is a natural representatives $\mathscr{M}\mathscr{C}$ and Γ in each class by requiring $\sum_{e \in \pi_j} l_j(e) = 1$. (normalization property)

Infinitary and finitary layers

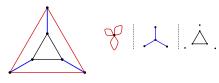


Figure: A tropical curve of rank three with underlying ordered partition $\pi = (\pi_1, \pi_2, \pi_3)$, with three infinitary layers $\Gamma^1, \Gamma^2, \Gamma^3$.

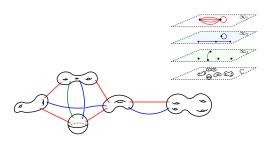


Figure: A hybrid curve \mathscr{C} of rank three with the corresponding infinitary layers $\Gamma^1, \Gamma^2, \Gamma^3$, and finitary (complex) layer $\pi_{\mathbb{C}}$.

Hybrid curves arise naturally in the study of multiparameter families of complex curves. The situation to have in mind:

 \mathcal{X}/B : Generically smooth family of complex curves

 $D \subset B$ discriminant locus, simple normal crossing (after a base change to a log-resolution).

Hybrid curves replace singular fibers of the family and give rise to a hybrid family \mathcal{X}^{hyb} defined on the hybrid replacement B^{hyb} of the pair (B, D).

 B^{hyb} : higher rank hybrid compactification of $B \setminus D$ defined in [AN20]. (Refinement of the compactification of Boucksom-Jonsson, Berkovich.)

(Higher rank) tropical and hybrid compactifications

 $\Delta = \{z \mid |z| \le 1\}$ closed disk of radius one.

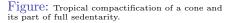
$$\Delta^* = \{ z \mid 0 < |z| \le 1 \}.$$

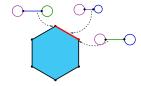
Consider Δ^d and $U = \Delta^{*r} \times \Delta^{d-r}$.

Locally (B, D) is of the form $(\Delta^d, \Delta^d \setminus U)$.

Enough to treat the case $B = \Delta^d$ and $D = \Delta^d \setminus U$.

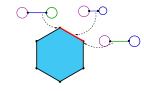
$$\begin{array}{ccc} \operatorname{Log} \colon U & \longrightarrow & \eta := \mathbb{R}^r_+ \\ (z_1, \dots, z_d) & \mapsto & (-\log|z_1|, \dots, -\log|z_r|). \end{array}$$





(Higher rank) tropical and hybrid compactifications

$$\begin{array}{ccc} \operatorname{Log} \colon U & \longrightarrow & \eta := \mathbb{R}^r_+ \\ (z_1, \dots, z_d) & \mapsto & (-\log|z_1|, \dots, -\log|z_r|). \end{array}$$



 $\overline{\eta}^{trop}$ the tropical compactification of η .

 $\boldsymbol{B}^{^{hyb}}\!:=\text{topological closure of }\boldsymbol{U}\hookrightarrow\boldsymbol{B}\times\overline{\boldsymbol{\eta}}^{^{trop}}$

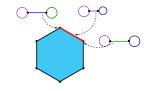
 \boldsymbol{B}^{hyb} is well-defined, that is, independent of choice of coordinates.

Definition (Hybrid moduli space)

Hybrid moduli space \mathscr{M}_g^{hyb} is the hybrid compactification of \mathscr{M}_g associated to the pair $(\overline{\mathscr{M}}_q,\partial\overline{\mathscr{M}}_q)$

(Higher rank) tropical and hybrid compactifications

$$\begin{array}{ccc} \operatorname{Log} \colon U & \longrightarrow & \eta := \mathbb{R}^r_+ \\ (z_1, \dots, z_d) & \mapsto & (-\log|z_1|, \dots, -\log|z_r|). \end{array}$$



 $\overline{\eta}^{trop}$ the tropical compactification of η .

 $\boldsymbol{B}^{^{hyb}} := \text{topological closure of } \boldsymbol{U} \hookrightarrow \boldsymbol{B} \times \overline{\boldsymbol{\eta}}^{^{trop}}$

 B^{hyb} is well-defined, that is, independent of the choice of coordinates.

Definition (Hybrid moduli space)

Hybrid moduli space $\mathscr{M}_{g,n}^{hyb}$ is the hybrid compactification of $\mathscr{M}_{g,n}$ associated to the pair $(\overline{\mathscr{M}}_{g,n}, \partial \overline{\mathscr{M}}_{g,n})$

- Introduction
- 2 Hybrid curves
- 3 Algebraic geometry of hybrid curves
- Analytic geometry of hybrid curves
- 6 Applications

Meromorphic functions on hybrid curves



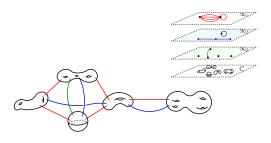
 \mathscr{C} : hybrid curve with underlying normalized triple $(S, \pi = (\pi_1, \dots, \pi_r), l)$, $\pi_{\mathbb{C}} := \widetilde{S}$ normalization of S

A hybrid meromorphic function on $\mathscr C$ is an (r+1)-tuple

$$f = (f_1, \ldots, f_r, f_{\mathbb{C}}),$$
 consisting of functions

• $f_j \colon \Gamma^j \to \mathbb{R}$ meromorphic on infinitary layers Γ^j , $j \in [r]$, meromorphic = continuous, piecewise affine with integral slopes

Meromorphic functions on hybrid curves



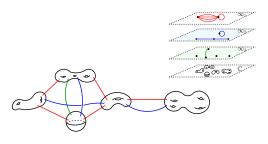
 \mathscr{C} : hybrid curve with underlying normalized triple $(S, \pi = (\pi_1, \dots, \pi_r), l)$, $\pi_{\mathbb{C}} := \widetilde{S}$ normalization of S

A hybrid meromorphic function on $\mathscr C$ is an (r+1)-tuple

$$\mathbf{f} = (f_1, \dots, f_r, f_{\mathbb{C}}),$$
 consisting of functions

• $f_j : \Gamma^j \to \mathbb{R}$ meromorphic on infinitary layers Γ^j , $j \in [r]$, meromorphic = continuous, piecewise affine with integral slopes.

Meromorphic functions on hybrid curves



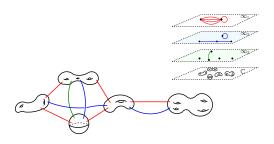
 \mathscr{C} : hybrid curve with underlying normalized triple $(S, \pi = (\pi_1, \dots, \pi_r), l)$, $\pi_{\mathbb{C}} := \widetilde{S}$ normalization of S

A hybrid meromorphic function on $\mathscr C$ is an (r+1)-tuple

$$f = (f_1, \dots, f_r, f_{\mathbb{C}}),$$
 consisting of functions

- $f_j : \Gamma^j \to \mathbb{R}$ meromorphic on infinitary layers Γ^j , $j \in [r]$, and
- $\bullet \ \ f_{\mathbb{C}} \colon \pi_{\mathbb{C}} \to \mathbb{C} \ \text{meromorphic on complex part} \ \pi_{\mathbb{C}}.$

Divisor theory on hybrid curves

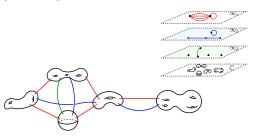


 \mathscr{C} : hybrid curve

 $\mathrm{Div}(\mathscr{C}) :$ free abelian group generated by points of $\mathscr{C}.$

$$D = \sum_{x \in \mathscr{C}} D(x) \, x.$$

Divisor theory on hybrid curves



Divisor of a meromorphic function f:

$$\operatorname{div}(\boldsymbol{f}) = \sum_{x \in \mathscr{C}} \operatorname{ord}_x(\boldsymbol{f}) x.$$

order of vanishing at x defined by

- x in the middle of e, $e \in \pi_j$, then $\operatorname{ord}_x(\mathbf{f})$ sum of slopes of f_j along two unit tangents at x on e.
- x in the smooth part of S, then $\operatorname{ord}_x(f) = \operatorname{ord}_x(f_{\mathbb{C}})$.
- x point of attachment of e to C_v , $e \in \pi_j$, then $\operatorname{ord}_x(f)$ is sum of $\operatorname{ord}_x(f_{\mathbb C})$ and slope of f_j along tangent vector at x on $e^{-\alpha}$

Hybrid Riemann-Roch

Theorem (Hybrid Riemann-Roch AN22b)

For any divisor $D \in \text{Div}(\mathscr{C})$,

$$r(D) - r(K - D) = \deg(D) - g + 1.$$

K: canonical divisor of \mathscr{C}

$$K = \sum_{v \in V} (\omega_{C_v} + A_v)$$

 ω_{C_v} canonical divisor of C_v

$$A_v = \sum_{e \sim v} p_v^e$$
 divisor on C_v

Generalizes graph (Baker-Norine), metric graph (Gahtman-Kerber, Mikhalkin-Zharkov), metrized curve complex (A.-Baker) Riemann-Roch theorems

Hybrid Abel-Jacobi theorem

Theorem (Hybrid Abel-Jacobi AN22-b)

There is an Abel-Jacobi map

$$\mathrm{AJ}_{\mathscr{C}}\colon \mathrm{Pic}^0(\mathscr{C})\longrightarrow \Omega^1(\mathscr{C})^*\big/H_1(\mathscr{C}).$$

The hybrid Abel-Jacobi map AJ is moreover an isomorphism.

 $\operatorname{Pic}^0(\mathscr{C})$ and $\Omega^1(\mathscr{C})$ come with natural filtrations.

$$\Omega^1(\mathscr{C})^* := \operatorname{Hom}\left(\Omega^1(\mathscr{C}), \mathbb{R}^r \times \mathbb{C}\right)$$
 which respects the twofiltration.

Hybrid Abel-Jacobi theorem

Theorem (Hybrid Abel-Jacobi AN22-b)

There is an Abel-Jacobi map

$$AJ_{\mathscr{C}} : Pic^{0}(\mathscr{C}) \longrightarrow \Omega^{1}(\mathscr{C})^{*}/H_{1}(\mathscr{C}).$$

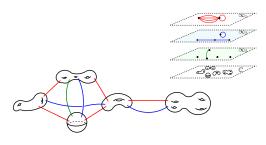
The hybrid Abel-Jacobi map AJ is moreover an isomorphism.

 $\operatorname{Pic}^0(\mathscr{C})$ and $\Omega^1(\mathscr{C})$ come with natural filtrations.

 $\Omega^1(\mathscr{C})^* := \operatorname{Hom}\left(\Omega^1(\mathscr{C}), \, \mathbb{R}^r \times \mathbb{C}\right)$ which respects the two filtration.

- Introduction
- 2 Hybrid curves
- 3 Algebraic geometry of hybrid curves
- 4 Analytic geometry of hybrid curves
- 6 Applications

Function theory on hybrid curves



 \mathscr{C} : hybrid curve with underlying normalized triple $(S, \pi = (\pi_1, \dots, \pi_r), l)$, $\pi_{\mathbb{C}} := \widetilde{S}$ normalization of S

A (complex-, real-valued) hybrid function on $\mathscr C$ is an (r+1)-tuple

$$f = (f_1, \dots, f_r, f_{\mathbb{C}}),$$
 consisting of functions

- $f_j \colon \Gamma^j \to \mathbb{C}, \mathbb{R}$ on infinitary layers Γ^j , $j \in [r]$, and
- $f_{\mathbb{C}} : \pi_{\mathbb{C}} \to \mathbb{C}, \mathbb{R}$ on the complex part $\pi_{\mathbb{C}}$.

 $\mathbf{f} = (f_1, \dots, f_r, f_{\mathbb{C}})$ on \mathscr{C} is called *continuous*, *smooth*, etc., if f_j are continuous, smooth, etc., respectively.

The infinitary parts f_j , j = 1, ..., r, are supposed to be continuous and piecewise smooth.

Each f_j gives rise to pull-back function $f_j^* \colon \Gamma \to \mathbb{C}, \mathbb{R}$ by linear interpolation.

The finitary (complex) part is supposed to be smooth, or, more generally, to have finitely many logarithmic poles on $\pi_{\mathbb{C}}$.

The pull-back $f_{\mathbb{C}}^* \colon \mathscr{MC} \to \mathbb{C}, \mathbb{R}$ is well-defined if $f_{\mathbb{C}}$ has no logarithmic poles.

Otherwise, we first regularize $f_{\mathbb{C}}$ to $f_{\mathbb{C}}^{\text{reg}}$ and then take the linear interpolation.

Regularization depends on the choice of a local coordinate.

$$f_{\mathbb{C}}^{\operatorname{reg}}(p_v^e) := \lim_{p \to p_v^e} f_{\mathbb{C}}(p) - r_v^e \log |z_v^e|,$$

for local parameter z_v^e around p_v^e .

In practice, this is given by an *adapted system of coordinates*, the existence of which is a consequence of Hubbard-Koch '14 analytic construction of $\overline{\mathcal{M}}_g$.

The infinitary parts f_j , j = 1, ..., r, are supposed to be continuous and piecewise smooth.

Each f_j gives rise to pull-back function $f_j^* \colon \Gamma \to \mathbb{C}, \mathbb{R}$ by linear interpolation.

The finitary (complex) part is supposed to be smooth, or, more generally, to have finitely many logarithmic poles on $\pi_{\mathbb{C}}$.

The pull-back $f_{\mathbb{C}}^* \colon \mathscr{MC} \to \mathbb{C}, \mathbb{R}$ is well-defined if $f_{\mathbb{C}}$ has no logarithmic poles.

Otherwise, we first regularize $f_{\mathbb{C}}$ to $f_{\mathbb{C}}^{\text{reg}}$ and then take the linear interpolation.

Regularization depends on the choice of a local coordinate.

$$f_{\mathbb{C}}^{\operatorname{reg}}(p_v^e) := \lim_{p \to p_v^e} f_{\mathbb{C}}(p) - r_v^e \log |z_v^e|,$$

for local parameter z_v^e around p_v^e .

The infinitary parts f_j , j = 1, ..., r, are supposed to be continuous and piecewise smooth.

Each f_j gives rise to pull-back function $f_i^* : \Gamma \to \mathbb{C}, \mathbb{R}$ by linear interpolation.

The finitary (complex) part is supposed to be smooth, or, more generally, to have finitely many logarithmic poles on $\pi_{\mathbb{C}}$.

The pull-back $f_{\mathbb{C}}^* \colon \mathscr{MC} \to \mathbb{C}, \mathbb{R}$ is well-defined if $f_{\mathbb{C}}$ has no logarithmic poles.

Otherwise, we first regularize $f_{\mathbb{C}}$ to $f_{\mathbb{C}}^{\text{reg}}$ and then take the linear interpolation.

Regularization depends on the choice of a local coordinate.

$$f_{\mathbb{C}}^{\operatorname{reg}}(p_v^e) := \lim_{p \to p_v^e} f_{\mathbb{C}}(p) - r_v^e \log |z_v^e|,$$

for local parameter z_v^e around p_v^e .

The infinitary parts f_j , j = 1, ..., r, are supposed to be continuous and piecewise smooth.

Each f_j gives rise to pull-back function $f_i^* : \Gamma \to \mathbb{C}, \mathbb{R}$ by linear interpolation.

The finitary (complex) part is supposed to be smooth, or, more generally, to have finitely many logarithmic poles on $\pi_{\mathbb{C}}$.

The pull-back $f_{\mathbb{C}}^* \colon \mathscr{MC} \to \mathbb{C}, \mathbb{R}$ is well-defined if $f_{\mathbb{C}}$ has no logarithmic poles.

Otherwise, we first regularize $f_{\mathbb{C}}$ to $f_{\mathbb{C}}^{\text{reg}}$ and then take the linear interpolation.

Regularization depends on the choice of a local coordinate.

$$f_{\mathbb{C}}^{\mathrm{reg}}(p_v^e) := \lim_{p \to p_v^e} f_{\mathbb{C}}(p) - r_v^e \log |z_v^e|,$$

for local parameter z_v^e around p_v^e .

The infinitary parts f_j , j = 1, ..., r, are supposed to be continuous and piecewise smooth.

Each f_j gives rise to pull-back function $f_i^* : \Gamma \to \mathbb{C}, \mathbb{R}$ by linear interpolation.

The finitary (complex) part is supposed to be smooth, or, more generally, to have finitely many logarithmic poles on $\pi_{\mathbb{C}}$.

The pull-back $f_{\mathbb{C}}^* \colon \mathscr{MC} \to \mathbb{C}, \mathbb{R}$ is well-defined if $f_{\mathbb{C}}$ has no logarithmic poles.

Otherwise, we first regularize $f_{\mathbb{C}}$ to $f_{\mathbb{C}}^{\text{reg}}$ and then take the linear interpolation.

Regularization depends on the choice of a local coordinate.

$$f_{\mathbb{C}}^{\mathrm{reg}}(p_v^e) := \lim_{p \to p_v^e} f_{\mathbb{C}}(p) - r_v^e \log |z_v^e|,$$

for local parameter z_v^e around p_v^e .

Layered measures

A layered measure μ on $\mathscr C$ is an r+1-tuple $(\mu_1,\ldots,\mu_r,\mu_{\mathbb C})$ of measures μ_j on $\Gamma^j,\ j=1,\ldots,r,$ and $\mu_{\mathbb C}$ on $\pi_{\mathbb C}$.

We define the mass function \mathcal{M} ass defined on the connected components of the layers by

$$Mass(H) := \mu_j(H) - \mu_{j-1}(\{x_H\}),$$

where x_H is the point of Γ^{j-1} associated to the contraction of H.

 μ is called of mass zero if \mathcal{M} ass vanishes.

A layered measure ν is called of mass one if $\mathcal{M}ass(\Gamma^1) = 1$ and outside Γ^1 , $\mathcal{M}ass$ vanishes.

Hybrid Laplacian

 \mathscr{C} : hybrid curve of rank r

 $\boldsymbol{f} = (f_1, \dots, f_r, f_{\mathbb{C}})$ hybrid function

 Δ : Hybrid functions \longrightarrow Layered measures of mass zero

$$\Delta(\mathbf{f}) = \Delta_1(f_1) + \Delta_2(f_2) + \dots \Delta_r(f_r) + \Delta_{\mathbb{C}}(f_{\mathbb{C}})$$

$$\Delta_{j}(f_{j}) := \left(0, \dots, 0, \Delta_{j}(f_{j}), \operatorname{div}_{j \prec j+1}(f_{j}), \dots, \operatorname{div}_{j \prec r}(f_{j}), \operatorname{div}_{j \prec \mathbb{C}}(f_{j})\right).$$

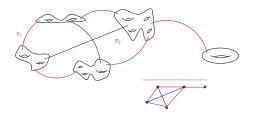
$$\Delta_{\mathbb{C}}(f_{\mathbb{C}}) := \left(0, \dots, 0, \Delta_{\mathbb{C}}(f_{\mathbb{C}})\right)$$

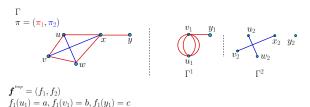
with

 Δ_j : metric graph Laplacian on Γ^j (Kirchhoff Laplacian)

 $\Delta_{\mathbb{C}}$: $\frac{1}{\pi i}\partial\bar{\partial}$ Laplacian on Riemann surfaces

$$\operatorname{div}_{j \prec i}(f_j) := -\sum_{e \in \pi_j} \sum_{v \in e} \operatorname{sl}_e f_j(v) \, \delta_{\operatorname{p}_j(v)},$$





Assume f_1 affine linear on each red edge. Then,

$$\operatorname{div}_{1 \prec 2}(f_1) = 10(a-b)\delta_{u_2} + 10(a-b)\delta_{w_2} + 10(b-a)\delta_{v_2} + (10(b-a) + 5(b-c))\delta_{x_2} + 5(c-b)\delta_{y_2}.$$

Theorem (AN22)

The hybrid Laplace operator is a weak limit of the Laplace operator on Riemann surfaces.

That is, using an appropriate notion of logarithm map from Riemann surfaces to hybrid curves, we pull-back f to nearby Riemann surfaces to get functions f_t , $t \in \mathcal{M}_q$.

Then, we have for any continuous function on the universal family \mathscr{C}_g^{hyb} ,

$$\int_{\mathscr{C}_t} h|_{\mathscr{C}_t} \Delta f_t \to \int_{\mathscr{C}_t} h|_{\mathscr{C}_t} \Delta f$$

as t tends to **t** in \mathscr{M}_g^{hyb} .

Hybrid Poisson equation I

 \mathscr{C} : hybrid curve of rank r

 $\boldsymbol{\mu} = (\mu_1, \dots, \mu_r, \mu_{\mathbb{C}})$: layered measure of mass zero on \mathscr{C}

Consider the equation on \mathscr{C} :

$$oldsymbol{\Delta} f = \mu$$

This is a coupled system of Poisson equations

$$\begin{cases} \Delta_1(f_1) = \mu_1 & \text{on } \Gamma^1 \\ \Delta_2(f_2) = \mu_2 - \text{div}_{1 \prec 2}(f_1) & \text{on } \Gamma^2 \\ \dots \\ \Delta_{\mathbb{C}}(f_{\mathbb{C}}) = \mu_{\mathbb{C}} - \sum_{j=1}^r \text{div}_{j \prec \mathbb{C}}(f_j) & \text{on } \pi_{\mathbb{C}} \end{cases}$$

on metric graphs Γ^j , $j \in [r]$, and $\pi_{\mathbb{C}}$.

Solutions exist. However,

Issue Dimension of the space of solutions = total number of connected components of layers.

Too many solutions

Hybrid Poisson equation I

 \mathscr{C} : hybrid curve of rank r

 $\boldsymbol{\mu} = (\mu_1, \dots, \mu_r, \mu_{\mathbb{C}})$: layered measure of mass zero on \mathscr{C}

Consider the equation on \mathscr{C} :

$$oldsymbol{\Delta} f = \mu$$

This is a coupled system of Poisson equations

$$\begin{cases} \Delta_1(f_1) = \mu_1 & \text{on } \Gamma^1 \\ \Delta_2(f_2) = \mu_2 - \text{div}_{1 \prec 2}(f_1) & \text{on } \Gamma^2 \\ \dots \\ \Delta_{\mathbb{C}}(f_{\mathbb{C}}) = \mu_{\mathbb{C}} - \sum_{j=1}^r \text{div}_{j \prec \mathbb{C}}(f_j) & \text{on } \pi_{\mathbb{C}} \end{cases}$$

on metric graphs Γ^j , $j \in [r]$, and $\pi_{\mathbb{C}}$.

Solutions exist. However,

Issue Dimension of the space of solutions = total number of connected components of layers.

Too many solutions!

Hybrid Poisson equation II

Uniqueness of solutions (modulo constants) will be guaranteed through a specific condition in the theory named

harmonically arranged property.

 \mathscr{C} : hybrid curve of rank r

 μ : layered measure of total mass zero

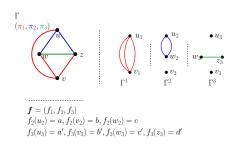
 ν : layered measure of mass one.

Consider the following hybrid Poisson equation

$$\begin{cases} \Delta f = \mu \\ f \text{ harmonically arranged} \\ \int_{\mathscr{C}} f \, d\nu = 0. \end{cases}$$
 (1)

Theorem (Existence and uniqueness of solutions of the hybrid Poisson equations AN22)

The hybrid Poisson equation has a unique solution f for every bimeasured hybrid curve (\mathscr{C}, μ, ν) .

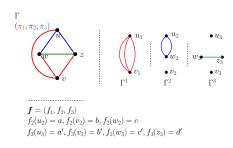


 f_j is called *lower harmonic* if it is harmonic up to layer j-1. This means, the slopes of f_j on π_i for all i < j satisfy the harmonicity property around all vertices w of Γ^i ,

$$\sum_{u \in \mathbf{p}_i^{-1}(w)} \sum_{\substack{e = uv \\ e \in \pi_i}} \frac{f_j(v) - f_j(u)}{l_i(e)} = 0.$$

In the example, f_2 is lower harmonic if b-a+2(b-c)=3b-a-2c=0, that is, if $b=\frac{a+2c}{2}$.

 f_3 is lower harmonic if 3b' = a' + b' + c' and 2a' = c' + d'.

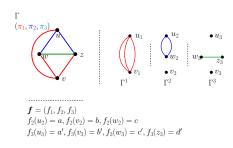


 f_j is called *lower harmonic* if it is harmonic up to layer j-1. This means, the slopes of f_j on π_i for all i < j satisfy the harmonicity property around all vertices w of Γ^i ,

$$\sum_{u \in \mathbf{p}_i^{-1}(w)} \sum_{\substack{e = uv \\ e \in \pi_i}} \frac{f_j(v) - f_j(u)}{l_i(e)} = 0.$$

In the example, f_2 is lower harmonic if b-a+2(b-c)=3b-a-2c=0, that is, if $b=\frac{a+2c}{2}$.

 f_3 is lower harmonic if 3b' = a' + b' + c' and 2a' = c' + d'.

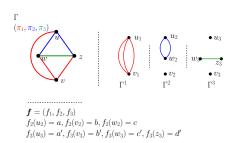


 f_j is called *lower harmonic* if it is harmonic up to layer j-1. This means, the slopes of f_j on π_i for all i < j satisfy the harmonicity property around all vertices w of Γ^i ,

$$\sum_{u \in \mathbf{p}_i^{-1}(w)} \sum_{\substack{e = uv \\ e \in \pi_i}} \frac{f_j(v) - f_j(u)}{l_i(e)} = 0.$$

In the example, f_2 is lower harmonic if b-a+2(b-c)=3b-a-2c=0, that is, if $b=\frac{a+2c}{3}$.

 f_3 is lower harmonic if 3b' = a' + b' + c' and 2a' = c' + d'.



 $f = (f_1, \dots, f_r, f_{\mathbb{C}})$ is harmonically arranged if f_j is lower harmonic for $j = 1, \dots, r, c$.

- Introduction
- 2 Hybrid curves
- 3 Algebraic geometry of hybrid curves
- 4 Analytic geometry of hybrid curves
- 6 Applications

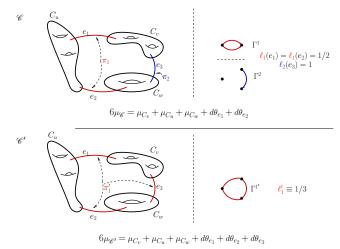


Figure: Example of two hybrid curves with the same underlying stable Riemann surface. The canonical measures have the same Archimedean parts. The non-Archimedean parts are however different.

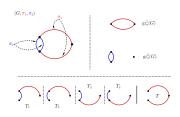


Figure: A tropical curve and its four spanning trees in $\mathcal{T}_{\pi}(G)$.

$$\mu^{can} := \frac{1}{g} \Big(\mu_{\operatorname{Ar}, \mathbb{C}} + \sum_{e \in E} \ell_e^{-1} \mu(e) \, d\theta_e \Big),$$

- $d\theta_e$ uniform Lebesgue measure on the edge $e \in E$.
- $\mu(e)$ Foster coefficient defined by

$$\mu(e) = \frac{1}{\sum_{T \in \mathcal{T}(G)} \omega(T)} \sum_{T \in \mathcal{T}_{\pi}(G): e \notin E(T)} \omega(T). \tag{2}$$

- for spanning tree T of G, $\omega(T) = \prod_{e \in E \setminus E(T)} \ell_e$.
- \bullet $\mu_{Ar,\mathbb{C}}$ is the Arakelov-Bergman measure of the components.

Hybrid moduli space \mathscr{M}_g^{hyb} comes with its universal family \mathscr{C}_g^{hyb} (defined on hybrid étale charts B^{hyb})

Theorem (AN20)

Canonically measured family $(\mathscr{C}_g^{hyb}, \mu^{can})$ is continuous over \mathscr{M}_g^{hyb} .

Continuity is in the distributional sense:

For any continuous $f: \mathscr{C}_g^{hyb} \to \mathbb{R}$, integration along fibers is continuous, i.e.,

$$F(\mathbf{t}) := \int_{\mathscr{C}^{hyb}_{\mathbf{t}}} f_{|_{\mathscr{C}^{hyb}_{\mathbf{t}}}} d\mu^{can}_{\mathbf{t}}, \qquad \mathbf{t} \in \mathscr{M}^{hyb}_{g}$$

is continuous on $\mathcal{M}_g^{^{hyb}}$.

Hybrid moduli space \mathscr{M}_g^{hyb} comes with its universal family \mathscr{C}_g^{hyb} (defined on hybrid étale charts B^{hyb})

Theorem (AN20)

Canonically measured family $(\mathscr{C}_g^{^{hyb}}, \mu^{^{can}})$ is continuous over $\mathscr{M}_g^{^{hyb}}$.

Question

Assume s_1, s_2, \ldots of \mathcal{M}_g converge to a point s_∞ in $\overline{\mathcal{M}}_g$.

What is the limit of the sequence of measures $\mu_1^{can}, \mu_2^{can}, \dots$?

Answer. If s_1, s_2, \ldots converges to a point **t** in \mathscr{M}_g^{hyb} , then the limit is the measure $\mu_{\mathbf{t}}^{can}$ defined on $\mathscr{C}_{\mathbf{t}}^{hyb}$.

Otherwise, there is no limit. $(\mathcal{M}_g^{hyb}$ is Hausdorff.)

Hybrid moduli space \mathscr{M}_g^{hyb} comes with its universal family \mathscr{C}_g^{hyb} (defined on hybrid étale charts B^{hyb})

Theorem (AN20)

Canonically measured family $(\mathscr{C}_g^{^{hyb}}, \mu^{^{can}})$ is continuous over $\mathscr{M}_g^{^{hyb}}$.

Question

Assume s_1, s_2, \ldots of \mathcal{M}_g converge to a point s_∞ in $\overline{\mathcal{M}}_g$.

What is the limit of the sequence of measures $\mu_1^{can}, \mu_2^{can}, \dots$?

Answer. If s_1, s_2, \ldots converges to a point **t** in \mathscr{M}_g^{hyb} , then the limit is the measure $\mu_{\mathbf{t}}^{can}$ defined on $\mathscr{C}_{\mathbf{t}}^{hyb}$.

Otherwise, there is no limit. $(\mathcal{M}_g^{hyb}$ is Hausdorff.)

Hybrid Green functions

 \mathscr{C} : hybrid curve of rank r

 $\boldsymbol{\mu} = (\mu_1, \dots, \mu_r, \mu_{\mathbb{C}})$: layered measure of total mass one $\mu_{\mathbb{C}}$ continuous (1,1)-form.

Any point $p \in \mathscr{C}$ induces a layered Dirac measure δ_p on \mathscr{C} .

The hybrid Poisson equation

$$\begin{cases} \Delta f = \delta_p - \mu, \\ f \text{ is harmonically arranged,} \\ \int_{\mathscr{C}} f d\mu = 0 \end{cases}$$
 (3)

has a unique solution denoted by

$$\mathbf{g}_{\boldsymbol{\mu}}(p,\cdot) = \left(\mathbf{g}_{\boldsymbol{\mu},1}(p,\cdot), \dots, \mathbf{g}_{\boldsymbol{\mu},r}(p,\cdot), \mathbf{g}_{\boldsymbol{\mu},\mathbb{C}}(p,\cdot) \right)$$

called the hybrid Green function associated to μ .

Asymptotics of Arakelov Green functions

Theorem (Layered expansion of the Arakelov Green function AN22)

For $(t, p_t) \in \mathcal{M}_{g,1}$ converging to the hybrid limit $(\mathbf{t}, p_t) \in \mathcal{M}_{g,1}^{hyb}$ corresponding to hybrid curve \mathscr{C} with underlying triple (S, π, l) , we can write uniformly

$$\mathbf{g}_{t}(p_{t},\cdot) = L_{1}(t)\hat{\mathbf{g}}_{t,1}(p_{t},\cdot) + L_{2}(t)\hat{\mathbf{g}}_{t,2}(p_{t},\cdot) + \dots + L_{r}(t)\hat{\mathbf{g}}_{t,r}(p_{t},\cdot) + \hat{\mathbf{g}}_{t,\mathbb{C}}(p_{t},\cdot) + o(1)$$

where

- (1) Functions $\hat{\mathbf{g}}_{t,j}(p_t,\cdot)$ converge to $\mathbf{g}_{t,j}(p_t,\cdot)$, and
- (2) The tuple $\mathbf{g_t}(p_t, \cdot) = (\mathbf{g_{t,1}}(p_t, \cdot), \dots, \mathbf{g_{t,r}}(p_t, \cdot), \mathbf{g_{t,\mathbb{C}}}(p_t, \cdot))$ is the hybrid Green function associated to the canonical measure μ_t^{can} .

Here $L_j(t) = -\sum_{e \in \pi_j} \log |z_e(t)|$ for analytic coordinates z_e around the point $s \in \overline{\mathcal{M}}_q$.

The tuple $\hat{\mathbf{g}}_{\mathbf{t}}(p_{\mathbf{t}},\cdot) = (\hat{\mathbf{g}}_{\mathbf{t},1}(p_{\mathbf{t}},\cdot),\dots,\hat{\mathbf{g}}_{\mathbf{t},r}(p_{\mathbf{t}},\cdot),\hat{\mathbf{g}}_{\mathbf{t},C}(p_{\mathbf{t}},\cdot))$ is a hybrid Green function for the pushout to \mathscr{C} of μ_t^{can} via an appropriate log map.

Comments

- Theorem implies a similar statement for other families.
- ${\color{red} 2}$ For a one-parameter family of Riemann surfaces ${\color{blue} {\mathcal S}}$ (defined over the punctured disk)
 - Wentworth '91. Refined asymptotics where the limit has a unique node.
 - ▶ de Jong '19. Dominant term.
- For multiparameter families, Faltings '20.

Indicated that the asymptotics is separated into two terms, graph and Riemann surface parts. Mentioned problematic issues in further description of these terms.